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We consider three-dimensional hypersonic flow past bodies whose trans- 
verse dimensions are substantially smaller than their length. Making use 
of the smallness of a parameter characterizing the relative thickness of 
the body. it is possible to put the problem of flow past such a body 
approximately in a form that generalizes the similitude of hypersonic 
small-disturbance flow to the case of arbitrary angle of attack. 

Approximate formulas are obtained for the calculation of the aero- 
dynamic characteristics of slender bodies at high angles of attack, con- 
taining as unknowns only certain constants depending on the cross- 
sectional form of the body. 

One approximate method of calculating hypersonic flows consists, as 
is well known, in considering flows past slender bodies whose surface is 
everywhere inclined at a small angle to the undisturbed stream. The velo- 
city field about a slender body may be regarded as a small-disturbance 
field close to its surface. Here the angle of attack of the body must 
obviously also be small. Although the differential equations of hyper- 
sonic small-disturbance theory remain nonlinear, so that they cannot be 
solved in general form, it is possible within the framework of this 
theory to find certain general properties of hypersonic flows. The most 
useful ones are tbe analogy with unsteady gas motion (the equivalence 
principle, or “law of plane sections”) f1.2.3 1 and the similarity rule 
for flow past affinely related bodies [4 I, an exposition of which may be 
found in the book [5 I. 

With increasing angle of attack the perturbations produced in the 
stream even by a very slender body cease to be small, and the small- 
disturbance theory becomes inapplicable. However, as is shown below, iu 
this case again the assumption of small relative thickness of the body 
permits a number of general conclusions to be drawn regarding the 
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properties of three-dimensional hypersonic flows past such bodies at 
high angle of attach. These results may be regarded as a generaliaation 
of the equivalence principle and the similarity rule of small-disturbance 
theory to the case of arbitrary angle of attack. Here it is necessary to 
impose still one further limitation on the shape of the body: one con- 
siders bodies all of whose transverse dimensions are much smaller than 
their length, For example, in order to be able to apply the results of 

the present work to the calculation of the aerodynamic characteristics 
of wings at hypersonic speeds we must assume that, in addition to small 
thickness, they have extremely small span. 

In considering hypersonic flows with finite perturbations of the 
velocity field and very intense shock waves it becomes important to con- 
sider real gas effects. The generalization of the present results to the 
case of flows of a real gas in thermodynamic equilibrium is given at the 
end of the paper, 

1. Statement of the problem. We consider flow past a slender or 
elongated body placed in a uniform supersonic stream at angle of attack 
a. Let the greatest transverse dimension of the body be d, and its length 
be 1. As a preliminary ~s~tion we suppose that 

6 =+<1 W 

We will assm that the Mach nnmber M, of the undisturbed streem is 
si+ficantly greater than unity, so that the following condition is 
satisfied: 

If the angle of attack is small (a 66) then the entire flow field 
between the shock wave and the surface of the body will comprise a 
region whose transverse dimension is of the order of the transverse di- 
mension of the body (Fig. la). At high angles of attack (a>> 61 the 
disturbance field wiI1, generally speaking, extend a finite distance 
from the body surface (Fig. 16). However, it is easy to see that this 
refers only to parts that are behind the body (on the leeward side). The 
pressure field in this region is weak, and its influence on the remain- 
ing parts of the flow disappears by virtue of the hypersonic character 
of the cross-flow (Moo sin a >> 1). At the same time, the compressed part 
of the stream (whose pressure greatly exceeds the static pressure in the 
undisturbed stream) lies near the surface of the body, and its trans- 
verse dimensions are, as before, of the order of the transverse dimen- 
sions of the body. 

Thus, even in the case of high angle of attack the problem of flow 
past a slender body reduces approximately to investigation of the flow 
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near its surface. Ihis circmstance leads to the possibility of its 
approximate analytical investigation. 
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FIG. la. FIG. lb. 

2. Equations and boundary conditions. We introduce a system 
of coordinates P, 9 , Q with the P axis along the body, so that the 
angle of inclination of the surface with this axis is small. We will 
assume that the velocity vector u_, of the undisturbed stream lies in the 
plane + = 0, R (Fig. 1). 

We denote the amponents of the velocity vector V in this system of 
coordinates by Q, u”, I’ respectively, and the pressure and density by 
p” and p”. We introduce dimensionless independent variables 

X0 
2=- 

1 ’ 
r=f, 

‘p = ‘PO (2.Q 

and dimensionless dependent variables 

U0 V0 W0 

’ = U7a ’ = tJ,sin a’ w= U,sina 

P” 
p = p,V,%n*a* 

p’p” 
PC0 

(2.2) 

The index 0~ refers throughout 

In these variables the system 
gas dynllplics takes the form 

to 

of 

conditians in the undisturbed atrem. 

partial differential equations of 
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whereSO is the specific entropy of the gas, which we will regard as a 
function of pressure and density. For a perfect gas with constant 
specific heats 

so = S,ln 
( 
f Mm2 sine a -$-) (2.4) 

where S_ is the specific entropy in the undisturbed stream, and y is the 
ratio of specific heats of the gas. We now consider the boundary condi- 

tions for the problem. 

Let r = rl(n, 4) be the equation of the surface of the body, and 
r = R(x, 4) the equation of the shock wave surface. We denote by m1 and 
IJ* unit vectors normal to these surfaces. In conformity with (2.1) we 
have 

‘Ihe condition of tangent flow at the body surface has the form 

VII, =O, or 
1 arr ah V-W-- =Gcotaux- 
rl 89 

(2.5) 

(2.6) 

For the unit vector nq normal to the shock wave surface we have 

na =Ilg{-6g,I, -g], Pa = [If +$r;,, + S’G)‘]-f (2.7) 

Two mutually orthogonal tangent vectors on this surface may be deter- 
mined as 

t 21 -- -I 0 i aR --9 9 ’ R a9 
1 I ta2= __1_-‘““,-6$+g!!] 

{ ( > p a9 (2.8) 

Ihe equations of conservation of mass, momentum, and energy relating 
quantities on the two sides of the shock surface have the form 

p”v.nz = poouoo.n2, v-t,, = uoo*t21, v.tz2=u,*t2a (2.9) 

P” +P"(V.n2)2=pm+pm(Um'n2)2, + (V*Q)‘+h” = $ (Um*n,)‘+ hm 

Here ho is the specific enthalpy of the gas, regarded as a function 
of pressure and density. For a perfect gas with constaRt specific heats 

h”=h,~Mm2sin2a$ (2.10) 
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where h, is the specific enthalpy of the undisturbed stream. 

Substituting into (2.9) the relation (2.101, the dimensionless de- 
pendent variables (2.21, the expression for the velocity vector in the 
undisturbed stream 

U, = U, (cos cc, sin cc cos ‘9, - sin a sin 9) (2.11) 

and the expressions for the vectors (2.7) and (2.8) we can, after some 
manipulation, write the system of boundary conditions on the shock wave 
surface in the form 

cotau =cota+6(cosy--0) g, (v- cosq+g+w+ sin? = 0 (2.12) 

+2 1 1+ $f (gy +v (g) 
r + 1 Mm2 sin2 a cm 

-6cota-gp+cosq+sinq+-~ 
(2.13) 

aR 1 aR 2 
2 -8cota,z+coscp+sinp-jj-a(p ) 1 y-1 1 

--- 
r r + 1 IW,~ sin2 a (2.14) 

3. Introduction of approximate relations. 'Ihe differential 
equations and boundary conditions obtained in the preceding section re- 
present an exact formulation of the flow problem. To simplify these re- 
lations one can take advantage of the smallness of the parameter charac- 
terizing the relative thickness of the body. In conformity with the in- 
troduction of dimensionless independent variables in the formulation of 
the problem, the dependent variables and their derivatives may clearly 
be regarded as quantities of order unity. Consideration of the first 
equation of the system (2.3) together with the boundary conditions (2.12) 
on the shock-wave surface penzits one to conclude that in the entire 
flow field 

cot au = cot a + 0 (6) (3.0 

Then discarding quantities of second order of smallness in the differ- 
ential equations (2.3) and taking (2.4) into account we can write an 
approximate systezn of equations for the independent variables v, 10, p, p 
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in the form* 

The boundary condition (2.6) on the surface of the body r = rl(zr 4) 
takes the form 

w ar, 
"--TF 

&otcc~ (3.3) 

'Ihe boundary conditiona on the shock wave surface r = R(x, $1 become 
after simplification 

Integration of (3.2) with boundary conditi~s 13.3) and (3.41 gives 
an a~roxi~te solution of the problem posed above of the flow past a 
slender body at arbitrary angle of attack. We note that, since in all 
these relations the ratio of the neglected terms to those retained is of 
order 6*, the a~roxi~tion under consideration should provide highly 

* The vefocfts com~oaent us if requfred, can be deteraeiaed bs use oE 
Bernoulli's equation. 



302 V, V. Sychcv 

accurate results (similar to what occurs in hypersonic small-disturbance 
theory). 

4. Flow similitude. If the independent variable x is replaced by 
the time variable 

t 
xl 

= u,ccsa (4.1) 

the approximate relations of the preceding section trsnsferm into the 
differential equations and boundary conditions determining unsteady gas 
flow in the pl sne x = const. It is easily seen that this unsteady motion 
depends on the action of a translating and expanding cylindrical pist.on. 
Here, the shape of the piston is determined by the cross-sectional shspe 
of the body, its rate of expansion by the longitudinal distribution of 
cross-sectional body area, and the velocity of the motion perpendicular 
to the axis by the angle of attach. ‘Ibis analogy represents a general- 
ieation of the equivalence rule (nlaw of plane sections*), according tc 
which the disturbances produced by a slender body moving with hypersonic 
speed at arbitrary angle of attack are essentially reduced to the dis- 
placement of gas particles in planes perpendicular to the axis of the 

body* 

We now observe that relations (3.2)-(3.4) involve only the two para- 
meters 

kf. = Gcota, k a = Afmsina (4.2) 

This demonstrates the validity of the similarity rule according to 
which flows past bodies with similar distributions of area and cross- 
sectional shape (affinely related bodies) are similar, that is, all the 
dimensionless functions (v, w, p, p) are equal at corresponding points 
of the field (x, r, +) if the similarity parmseters k, and k, have the 
same values for two cases. 

Using the resulting similarity rule we can, collecting the results, 
write a formula for the pressure coefficient on the surface of the body 
in the form 

C, = 2 sh"a{p [G rl(x, ~1, Q, h, &I- $p--} (4.3) 

By integrating over the surface of the body it is easy to find ex- 
pressions: for the normal force coefficient 

for the axial force coefficient 
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for the longitudinal moment coefficient 

(4.5) 

(4.6) 

Hare, the quantities Cm*, C,*, Cs*, regarded as functions of the 
similarity parameters, are equal for affinely similar bodies. 

It is easy to see that the equations and boundary conditions of the 
previous section, as well as the results just formulated, agree, for 
small angles of attack (a- 6)) with the well-known relations and results 
of hypersonic small-disturbance theory for three-dimansional flows [ 6 1. 
In this sense they can be regarded as a generalization of that theory to 
arbitrary angle of attack. 

5. Aerodyaawic characteristics of slender bodits at high 
angles of attack. At high angles of attack (a >> 6) one should 
neglect in the boundary conditions (3.4) not only terms of order 6* but 
also those containing factors of 1/hfm2 sin’s which, in view of the 
initial assumption (1.2), have the same or even a higher order of small- 
ness. In this case the solution does not, in general, depend on the Mach 
number M_. lhis shows that the aerodynamic characteristics of slender 
bodies at high augles of attack attain far sooner then for small a their 
hypersonic limits, corresponding to M, + 8. 

‘lhe single remaining similarity parameter k, becomes small for a >r 6. 
‘Ihis circumstance may be exploited for approximate integration of the 
system (3.4). 

We take advantage of this possibility in order to determine the aero- 
dynamic characteristics of slender bodies whose cross-sectional shape is 
constant along their length. 

‘Ihe equation of the surface of sny such body can clearly be written 
in the form 

r = r1@, 9) = f(z)&) (5.1) 

‘Sben the boundary condition (3.3) takes the fon 

(5.2) 

and the boundary conditions (3.4) on the shock-wave surface r = 8(x, 4) 
can be written in the form 
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1 aR 
w=-sin~-t(cos~--z~)~~ (5.3) 

aR 1 aR 2 
2 --/cl ar + cm ‘p + sin ‘p R T 

> 
p= rfl 1 /AR\” t (, = 7 -1- 1 

r-l 
(5.4) 

1+Ra\r;) 

Using the smallness 
approximation adopted, 

folm 

of the parameter k, we can, with the degree of 
represent the solution of the system (3.2) in the 

v = 270 $lClU1, w= wo + Q% P = PO + k,PlY Q = Qo + k,Ql (5.5) 

We also represent the equation of the shock-wave surface in the form 

If we now substitute (5.5) and (5.6) into the differential equations 

(3.2) and the boundary conditions (5.2), (5.3) and (5.4), it is easy to 

obtain for the leading terms of (5.5) a system of relations equivalent 

to the exact formulation of the problem of transverse flow past a 

cylinder with the Mach number M, + 00. 

lllus 

Ro @, cp> = f (4 Qo (d (5.7) 

210 = co (9, cp), 2L’o = wo (Y, ‘9), PO = Po(Y, Cph PO = Qo (2/l 9) (Y= &) 68) 

‘lbe linear system of differential equations obtained for the second- 
ary terms in (5.5), together with the corresponding boundary conditions 

can, as is easily verified, be satisfied by a solution of the form 

R1 (r1 9) = f (x) I’ (r) 01(T) (5.9) 

2’1 = f' (4 Vl (Y, cph 

Wl = f’(4 "ul(?/, cph 

Pl = I’ (4 Pl (!I, 'p) 

PI = 1’ @) PI (Y, ‘9) 
(5.10) 

Collecting results, we obtain the approximate expression 

C, = 2sln2= {POT, (PI + 6cotzT (4 PI k (‘f), cpll (5.11) 

‘lben, for the coefficients of aerodynamic forces and longitudinal 

moment defined above, we find 
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in which the constants A, B, C and f) depend only on the cross-sectional 

shape of the body. lhus, for example, in order to calculate the aero- 
dynamic characteristics of slender bodies of revolution of arbitrary 

shape it is sufficient to determine these four constants once for all. 

‘lhis can be done either by exact &unerical) integration of the equations 

obtained above, or by using the results of experimental investigations 

of a single slender body of revolution (of arbitrary shape) at high 

supersonic speeds and large angles of attack. ‘Ihe region of applicability 

of the formulas (5.12) is bounded by the range of angles of attack 
&<<a< f/&n. 

6. Consideration of real gas properties. Hypersonic flow past 
a body, particularly at high angle of attack, is associated with the 

formation of strong shock waves. In the transition across such shock-wave 

fronts, excitation of additional degrees of freedom of the molecules may 

take place, in the processes of dissociation and ionization of the gas. 

Consideration of these effects under the assumption of local thersm- 

dynamic equilibriun in the whole flow field presents no difficulties in 

principle. We will consider the specific entropy So and specific enthalpy 

ho of the gas to be functions of the pressure and density, and also the 

thermodynamic state and chemical composition of the gas in the undisturb- 

ed stream to be characterized by the values p,, p,, and the concentra- 

tions Cim of the components L 7 1. 

‘l&n, together with relations (2.4) and (Z.lO), we have the relations 

which we can clearly put into the simpler forms 

so = S,s WP,p; poo, pw, Ci,) 

ho = Lh (kz2p,p; POO, pa31 Ciao) 

(6.3) 

F-4) 

From this follows the possibility of generalizing the results obtained 
above for the similitude of hypersonic flows of a perfect gas with 
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constant specific heats to the general case of flows in thermodynamic 

equilibrium. For similitude of flows past a family of affinely-related 

bodies in this case, aside from the constancy of the similarity para- 

meters k, and k,, the conditions must also be fulfilled of the same 
chemical composition and thermodynamic state in the undisturbed stream. 
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